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Frankel equation for turbulent flames in the presence of a hydrodynamic instability
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An extension of the Frankel equation, coupled to a treatment of reconnections, is used to describe numeri-
cally turbulent flames submitted to the hydrodynamic Darrieus-Landau instability. The role played by this
instability on the fractal properties of the front is evaluatefil063-651X97)03506-X

PACS numbeps): 47.70.Fw, 82.40.Py

It has been customary to describe turbulent premixedvhere the integration is taken over the contour, and a
flames as interfaces propagating normally with a given lamiparameter controlling the importance of the hydrodynamic
nar velocity, and submitted to an imposed turbulent flowinstability. In the case of a circle ang=0, the normal ve-
field [1]. However, it is well known that there is a retroaction locity V,, becomes simply 1, as has been shown in the origi-
of the flame front, which induces a new velocity field, which nal article of Frankel9]. If we consider the growth rate
in turn will also affect the flame wrinkling. o(k) of sinusoidal perturbations with wave vectomapplied

In the case of laminar flames, this retroaction effect leadso a plane flameg( k) has the form
to the hydrodynamic Darrieus-Landau instability. A nonlin-
ear equation, the Michelson-Sivashinsky equati@h has (k)= a|k|—ek?, 2
been introduced to describe this instability in the limit where
the burnt gases are irrotational and where the flame is closghere« ande are the coefficient appearing in Ed.).
to a plane flame. Despite these simplifying hypotheses, this Note that Eq.(1) is derived in the case where the flow is
equation had a lot of success in describing correctly most ofotential, this potential being created by the contour uni-
the nonlinear features observed in laminar flaf@s6]. Ex-  formly charged with charge/s. If we define the tempera-
tensions of this equation have also been successful in deure of unburnt gases b, the temperature of burnt gases
scribing spherically expanding flamgg8]. This Michelson- by T,, and by y the gas expansion parameger(T,
Sivashinsky equation has been generalized to obtain aT )/T, it can be show9] thata=1/2, wheny is small if
coordinate-free equation describing a closed front, thehe unit of length is the flame thickness and the unit of time
Frankel equatiorf9] (an alternative way to incorporate heat the transit time through the flame. However, although the
release into a lagrangian method has been proposed®ih  Frankel equation and the Michelson-Sivashinsky equations
A numerical solution of the Frankel equation can be found ingre derived rigorously only wher is small, it has been
[11], and in[12] an interesting study of the behavior of lami- found[4] that the real domain of applicability of these equa-
nar flames with a very large radius. We shall be concernegions is much wider ifa is simply chosen as the slope at the
here with the problem of turbulent flame fronts submitted tOorigin of the dispersion relatiof), for a finite y, and ife is
the Darrieus-Landau instability; a variant of the Frankelchosen to give the good domain of unstable wave vectors.
equation, coupled to a treatment of reconnections occurring Let us now consider the problem of turbulent flames with
on the front, will be used for this purpose. gas expansion. In principle, it would be sufficient to add to

Let us first recall the usual form of the Frankel equation.the normal Ve|ocity of markers defined by the Frankel equa-
Let us note byn the local normal vector at a given point of tion [Eq. (1)] the turbulent velocity of the flow without
the flame, which is assumed to have the topology of a C|Oseﬂame_ Such an approach has been use[(.‘B]r'nn the case of
contour.n will be chosen to point in the direction of flame the Michelson-Sivashinsky equation. Then the markers
propagation. The evolution of the front is completely de-would evolve according to the total velocity.
scribed by specifying the normal velocity of the flame at  However, the two-dimensional problem is not so simple.
each point of the contour. This normal velocity is the sum ofywhen a turbulent velocity field is taken into account, recon-
two terms: a first termu;(1—e«) represents the flame ve- nections occur on the front, forming new pockets which
locity: it is given by the laminar velocity, corrected by a  separate from the original one. We must have a way to de-
term proportional to the curvature(e being a constant usu- scribe the different pockets, and to perform the reconnec-
ally called the Markstein lengih The valuesu;=1 and tjons.
£=0.1 will be used in the simulations presented in this paper. Concerning the first problem, the Frankel equation can be
A second term corresponding to the normal velocity causeéxtended to the case where the front consists of a finite num-
by hydrodynamics has to be added to the flame velocity, anger of pockets, each with its own propagation direction
the Frankel equatiof®] is obtained, (burnt gases surrounded by fresh gases or fresh gases sur-

rounded by burnt gasgsAs the potential leading to the ve-
locity in Eq. (1) is simply an electrostatic potential of a line
(1) uniformly charged, we can add the potentials of all the pock-
' ets because of a superposition principle, and we obtain
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where we have added a sum over all pockets, and each inte
gral is taken over one pocké® (the integrals are simply
computed by a trapezoidal rilerhe displacement of a point
at positionr being given by

dr_
a—vn(r)nJrV(r,t), (4)

whereV is the turbulent velocity field.

Now, we come to the reconnections problem. A way to
handle this problem with a Lagrangian method has been in-
dicated in[13] for the case of a front at zero heat release. We
give here a summary of the method used, which can be de
composed into different stages. At each time step, the front is (a)
first submitted to a propagation stadeg. (4)]. As a result of
this propagatiorfand of the turbulent velocity fiejdhe front
can present self-intersections. These intersections indicat
that a reconnection is occurring. In the second stage the in
tersections are detected, and the third stage consists in pe
forming the reconnection detected. Finally, in the fourth
stage, the mesh points on the front are adapted.

We have described, for the moment, how the propagation
state can incorporate a nonzero heat release through the u:
of the Frankel equation. Let us describe the intersections
detection stage. We do not examine if each couple of seg
ments intersect each other. It would be a waste of compute
time, as segments in most couples are relatively far from
each other, and have no chance to intersect. So we divide th
domain in several boxes, a segment belongs to a box if it
crosses this box, and we only look for intersections inside
each box. Once the intersections are detected, we perforr
the reconnection associated to the intersection pattern, if it is
recognized by the program. An example of a rule imple-
mented |S Shown |n Flg 1. Th|S wDe Of reconnect|0n causes FIG. 1. Reconnection of a Self-intersecting frO(Et) The front
the creation of a new pocket. If the reconnection is not recbefore reconnectior.(b) The front after reconnection: a pocket has
ognized by the program, we take the solution at the previougee” (_:reated, a point has bgen deleted, and two new points corre-
time and reduce the time step until the reconnection is recPonding to the two intersections have been created.
ognized. Once the reconnections have been performed, we _ )
adapt the mesh by inserting new points where the mesh siZ8 the high valuea=12 for the amplitude. The turbulent
is too great or deleting points where points are too closeintensity u’ corresponding to the value @ can be calcu-
During the adaptation process, we also delete pockets dated by the Parseval equality
fresh gases which are too small.

We choose the following turbulent fiel@/,V,):

(b)

u'=

1 1/2
Z; (aki—5/6)2:| ) (7)

V,=— > ak %6 cogk;x+ o) sin(kiy+ ¢, )cog w;t),
x % ' ghixtep)sinkiy + ey )cogwit) We obtain fora=12 the valueu’=15.3 which is very

(5)  high compared to the laminar velocity, which is 1 here.
The velocity field is incompressible and contains several

different scales. The amplitude at a given scale
(aki’5’6)c0rresponds to a Kolmogorov spectrumi.e.,

(6) aki_5/3 spectrum forE(k)] for this anisotropic flow field.
This spectrum decreases more quicklkascreases than the

where a controls the amplitude of the turbulent field. The spectrum taken ifil3].

possible wave vectors in the computational domain lgre Another difference with this paper is that here we do not

=(27i)/30, wherei is an integer number ranging from 5 to select a frozen flow field and take into account time decor-

100. ¢ix and;, are constant random phases associated withelations through the term cast). We will perform calcu-

the wave vectok; . All the simulations presented correspond lations corresponding to the two values,=3ak!®and

V,= ; ak; ¥ sin(kix+ ¢, ) cog kiy + @iy ) cog wit),
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FIG. 2. (a) Propagating front
for w;=3ak"® anda=0 (the front
T T T T T T T is propagating outwardls(b) Plot

"fractal.data’' —o— of In(S) vs In(dx) for the previous
s 6l . 4.5°0.34 x - i front.

()

; =3aki2’3 in order to have an idea of the effect of decorre-scale of the turbulent field which is approximately 0.2 in our
lations on the fractal dimension. Let us note, however, thasimulations.
the front propagates through the turbulent field, and gener- We define the fractal dimension of the front by a box
ates its own decorrelations because of the propagation. D&ounting method: we cover the domain with squares of size
pending on parameters, the decorrelation due to propagatighx and see how many boxéé are occupied by a portion of
could be dominanti.e., correlation times smallecompared the main pocket. We obtain a leng8¥ N* dx of the main
to decorrelation due to turbulence itself over a range ofocket, and plot If6) measured at this scale, versus the loga-
scales. rithm of the scale 16 dx). The fractal dimensioml; is one
We start with a pocket of burnt gases surrounded by fresiminus the slope of this curve. We consider the fractal dimen-
gases of radius 5, and let it evolve until it presents a fractasion of only the main pocket and not of the main and sec-
form with a fractal dimension approximately constant inondary pockets, because for large turbulence intensities, very
time. The time that we have to wait is relatively short, ap-small pockets are created, which are not at all fractal and
proximately 0.5, which can be compared to a maximumshould not be included in the box counting. Contrary18),
growth rate 0.4typical growth time of instability 2.pwhen  we use here a fractal dimension given by a box counting
a=0.4(in time units corresponding te=0.1). This time can method and not by comparing the lengths of polygonal ap-
also be compared to the larger correlation tifa large  proximations of the front at different scales, because we
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) FIG. 3. (a) Propagating front
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have found that for high values of heat release, the polygondlrbulence. Compared to the previous céSigs. 2 and 3
fractal dimension is noticeably higher than the box countingwhere the correlation time was slowly varying, the correla-
fractal dimension and seems less reliable. tion time is approximately the same at large scales, but is
In Fig. 2a), we show in the case;=3ak"® front ob-  much lower at small scales. In this case, the measurement of
tained for =0 (zero heat releageThe front has a fractal the fractal dimension is more difficult and we estimate a
dimensiond;=1.34, as seen by the slope of the curvetypical error to be+0.03. In Fig. 4, a front obtained far=0
In(S) vs In(dx) in Fig. 2(b). In Fig. 3a), we take(for the is shown, with a fractal dimensiaiy=1.33, very close to the
same value ofw;) «=0.35: we obtain a fractal dimension value of Fig. Za). In Fig. 5, we havea=0.4: the fractal
d¢=1.50. The curve I(5) vs In(dx) is given for this case in dimension is nowd;=1.46.
Fig. 3(b). Because of the variation in time of the fractal di- The dependence of the fractal dimension witis shown
mension measured and of the choice of the line giving thén Fig. 6 for both values of correlation time. Because of the
slope of the curve, the fractal dimensions obtained are nagrrors involved in the measurement of the fractal dimension,
very precise and we expect a typical error of the order othe points are relatively scattered, and we also give in this
+0.02. figure a fit for each value of the correlation time. For low
We now examine the Cam=3aki2’3, which corresponds values of @ the two curves are relatively close, giving a
to the scaling of decorrelations expected for Kolmogorovfractal dimension close to 1.34; however, wheimcreases,
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with k, and gives the value, already obtained by Lanid#]

L

T2\

Now we have to normalizex with the units used in this
paper, i.e., corresponding t=0.1. If we take a Markstein
length of 4, we obtaina=0.16. A Markstein length of 8
would give an even lower value=0.11. It is easily seen in
Fig. 6 that these values @f correspond on the lower curve
(Kolmogorov temporal scalingo a relatively small increase
in fractal dimension due to gas expansion. Thus we can jus-
tify to a large extent the usual approximation of zero heat
release used in many theoretical and numerical works on
turbulent premixed flameésee[1], for instance Even for
a=0.16 and on the higher curve, i.e., for a maximum value
of the fractal dimension, we only obtain an increase of ap-
proximately 0.1 compared to the value at zero heat release.
k% and a=0. For the typical values ok, the value we geton the lower
curve for d; for this particular flow field is comparable to
the curve Corresponding toi:3aki1/6 (i_e_' |arger correla- values Usua”y obtained in experiments for h|gh amplitudes

tion time) is higher and seems to saturate for high values off forcing. We recall here for purpose of comparison the
a, i.e., very exothermic flames, corresponding to typicalvalued;=1.38 obtained i17] in a propane engine.
fronts, as seen in Fig.(8. On the contrary, the curve corre- This increase in fractal dimension caused by heat release
sponding taw; = 3ak® increases in a much slower way, Fig. is measurable in experiments by varying the equivalence ra-
5 corresponding to the last point of this curve. We recall thafi® While fixing the ratio of the amplitude of forcing to the
this scaling ofw; corresponds to the one in Kolmogorov laminar flame velocity. In general, the variation of the Mark-
turbulence. stein length with the equivalence ratio has to be taken into
It is important to have an estimate of the valueaoor- account, and this complicates the interpretation of the experi-
responding to a typical flame encountered in experiments, ilmente_ll results, as the Markstein length is difficult to measure
order to locate this typical point on Fig. 6. We consider acXPerimentally. The result suggested by this paper that the
flame with y=0.8, corresponding to burnt gases with a tem-€ffect of heat release is relatively small for typical flames
perature five times higher than the temperature of fresi§€EMS o be compatible with experimetsee, for instance
gases. It has been difficult to measure Markstein lengths ex18)), Which describe the fractal dimension as a function of
perimentally, but it seems typical values of this parametthe, ratio of amplitude of forcing to laminar velocity, without
range from 4 to §14,19 (in units of flame thicknegs The taking into account at all the effect of heat release. However,
value ofe in units deduced from the flame thickness and thelliS €ffect should not be small in the case of a very exother-
transit time is, as explained before, obtained by consideringic flame with a low Markstein length, which gives a more

the first term of the development of the dispersion relatiofmPortant value oiw in Fig. 6. _
In this paper, by using a modified version of the Frankel

equation in combination with a treatment of reconnections
occurring during propagation, we have been able to simulate
turbulent premixed flames submitted to the hydrodynamic
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FIG. 4. Propagating front foim;=3a
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FIG. 6. Fractal dimensiom; vs a: numerical results forw;
=3ak!® (black diamonds for w;=3ak?3white circles, fit for
FIG. 5. Propagating front fom; =3ak®* and «=0.4. w;=3ak® (solid line), fit for w;=3ak?*(dotted ling.
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Darrieus-Landau instability. This work suggests that for typi-lence should however be done before a definitive conclusion

cal values of gas expansion, the increase of fractal dimensioon the effect of heat release is obtained. In any event, heat
with heat release is relatively low. This study is performedrelease is important for low and moderate forcings. The

with a simple model of turbulent field, but others, more re-Frankel equation used in this article could be very useful in

alistic turbulent fields could be used in the framework pro-case of moderate forcings, where the front position cannot be
vided in this paper. A comparison with experimental worksdescribed by a function of the angular coordinate, and a truly
(in a three-dimensional configuration, with realistic turbu-coordinate-free formulating is necessary.
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