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Frankel equation for turbulent flames in the presence of a hydrodynamic instability
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An extension of the Frankel equation, coupled to a treatment of reconnections, is used to describe numeri-
cally turbulent flames submitted to the hydrodynamic Darrieus-Landau instability. The role played by this
instability on the fractal properties of the front is evaluated.@S1063-651X~97!03506-X#

PACS number~s!: 47.70.Fw, 82.40.Py
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It has been customary to describe turbulent premi
flames as interfaces propagating normally with a given la
nar velocity, and submitted to an imposed turbulent fl
field @1#. However, it is well known that there is a retroactio
of the flame front, which induces a new velocity field, whi
in turn will also affect the flame wrinkling.

In the case of laminar flames, this retroaction effect le
to the hydrodynamic Darrieus-Landau instability. A nonli
ear equation, the Michelson-Sivashinsky equation@2#, has
been introduced to describe this instability in the limit whe
the burnt gases are irrotational and where the flame is c
to a plane flame. Despite these simplifying hypotheses,
equation had a lot of success in describing correctly mos
the nonlinear features observed in laminar flames@3–6#. Ex-
tensions of this equation have also been successful in
scribing spherically expanding flames@7,8#. This Michelson-
Sivashinsky equation has been generalized to obtai
coordinate-free equation describing a closed front,
Frankel equation@9# ~an alternative way to incorporate he
release into a lagrangian method has been proposed in@10#!.
A numerical solution of the Frankel equation can be found
@11#, and in@12# an interesting study of the behavior of lam
nar flames with a very large radius. We shall be concer
here with the problem of turbulent flame fronts submitted
the Darrieus-Landau instability; a variant of the Frank
equation, coupled to a treatment of reconnections occur
on the front, will be used for this purpose.

Let us first recall the usual form of the Frankel equatio
Let us note byn the local normal vector at a given point o
the flame, which is assumed to have the topology of a clo
contour.n will be chosen to point in the direction of flam
propagation. The evolution of the front is completely d
scribed by specifying the normal velocity of the flame
each point of the contour. This normal velocity is the sum
two terms: a first termu1(12«k) represents the flame ve
locity: it is given by the laminar velocityu1 corrected by a
term proportional to the curvaturek ~« being a constant usu
ally called the Markstein length!. The valuesu151 and
«50.1 will be used in the simulations presented in this pap
A second term corresponding to the normal velocity cau
by hydrodynamics has to be added to the flame velocity,
the Frankel equation@9# is obtained,

Vn~r !512«k2aF12
1

pE ~r2j!•n

ur2ju2
dljG , ~1!
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where the integration is taken over the contour, anda is a
parameter controlling the importance of the hydrodynam
instability. In the case of a circle and«50, the normal ve-
locity Vn becomes simply 1, as has been shown in the or
nal article of Frankel@9#. If we consider the growth rate
s~k! of sinusoidal perturbations with wave vectork applied
to a plane flame,s~ k! has the form

s~k!5auku2«k2, ~2!

wherea and« are the coefficient appearing in Eq.~1!.
Note that Eq.~1! is derived in the case where the flow

potential, this potential being created by the contour u
formly charged with chargea/p. If we define the tempera
ture of unburnt gases byTu, the temperature of burnt gase
by Tb , and by g the gas expansion parameterg5(Tb
2Tu)/Tb it can be shown@9# thata5g/2, wheng is small if
the unit of length is the flame thickness and the unit of tim
the transit time through the flame. However, although
Frankel equation and the Michelson-Sivashinsky equati
are derived rigorously only wheng is small, it has been
found @4# that the real domain of applicability of these equ
tions is much wider ifa is simply chosen as the slope at th
origin of the dispersion relation~2!, for a finiteg, and if « is
chosen to give the good domain of unstable wave vector

Let us now consider the problem of turbulent flames w
gas expansion. In principle, it would be sufficient to add
the normal velocity of markers defined by the Frankel eq
tion @Eq. ~1!# the turbulent velocity of the flow withou
flame. Such an approach has been used in@5# in the case of
the Michelson-Sivashinsky equation. Then the mark
would evolve according to the total velocity.

However, the two-dimensional problem is not so simp
When a turbulent velocity field is taken into account, reco
nections occur on the front, forming new pockets whi
separate from the original one. We must have a way to
scribe the different pockets, and to perform the reconn
tions.

Concerning the first problem, the Frankel equation can
extended to the case where the front consists of a finite n
ber of pockets, each with its own propagation directi
~burnt gases surrounded by fresh gases or fresh gases
rounded by burnt gases!. As the potential leading to the ve
locity in Eq. ~1! is simply an electrostatic potential of a lin
uniformly charged, we can add the potentials of all the po
ets because of a superposition principle, and we obtain
6911 © 1997 The American Physical Society



in

t

to
i

d
t

ca
i
p
rth

tio
e
on
e
ut
om
t
if
id
fo
it
le
se
ec
ou
re
,
si
s
s

e

o
i
d

t

ral
le

ot
or-

s
orre-

6912 55BRUNO DENET
Vn~r !512«k2aS 12
1

p(
P

E
P

~r2j!•n

ur2ju2
dljD , ~3!

where we have added a sum over all pockets, and each
gral is taken over one pocketP ~the integrals are simply
computed by a trapezoidal rule!. The displacement of a poin
at positionr being given by

dr

dt
5Vn~r !n1V~r ,t !, ~4!

whereV is the turbulent velocity field.
Now, we come to the reconnections problem. A way

handle this problem with a Lagrangian method has been
dicated in@13# for the case of a front at zero heat release. W
give here a summary of the method used, which can be
composed into different stages. At each time step, the fron
first submitted to a propagation stage@Eq. ~4!#. As a result of
this propagation~and of the turbulent velocity field! the front
can present self-intersections. These intersections indi
that a reconnection is occurring. In the second stage the
tersections are detected, and the third stage consists in
forming the reconnection detected. Finally, in the fou
stage, the mesh points on the front are adapted.

We have described, for the moment, how the propaga
state can incorporate a nonzero heat release through th
of the Frankel equation. Let us describe the intersecti
detection stage. We do not examine if each couple of s
ments intersect each other. It would be a waste of comp
time, as segments in most couples are relatively far fr
each other, and have no chance to intersect. So we divide
domain in several boxes, a segment belongs to a box
crosses this box, and we only look for intersections ins
each box. Once the intersections are detected, we per
the reconnection associated to the intersection pattern, if
recognized by the program. An example of a rule imp
mented is shown in Fig. 1. This type of reconnection cau
the creation of a new pocket. If the reconnection is not r
ognized by the program, we take the solution at the previ
time and reduce the time step until the reconnection is
ognized. Once the reconnections have been performed
adapt the mesh by inserting new points where the mesh
is too great or deleting points where points are too clo
During the adaptation process, we also delete pocket
fresh gases which are too small.

We choose the following turbulent field~V ,Vy!:

Vx52(
ki

aki
25/6 cos~kix1w ix!sin~kiy1w iy!cos~v i t !,

~5!

Vy5(
ki

aki
25/6 sin~kix1w ix!cos~kiy1w iy!cos~v i t !,

~6!

wherea controls the amplitude of the turbulent field. Th
possible wave vectors in the computational domain areki
5(2p i )/30, wherei is an integer number ranging from 5 t
100.w ix andw iy are constant random phases associated w
the wave vectorki . All the simulations presented correspon
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to the high valuea512 for the amplitude. The turbulen
intensity u8 corresponding to the value ofa can be calcu-
lated by the Parseval equality

u85F14(ki ~aki
25/6!2G1/2. ~7!

We obtain fora512 the valueu8515.3 which is very
high compared to the laminar velocity, which is 1 here.

The velocity field is incompressible and contains seve
different scales. The amplitude at a given sca
~aki

25/6)corresponds to a Kolmogorov spectrum@i.e.,
aki

25/3 spectrum forE(k)# for this anisotropic flow field.
This spectrum decreases more quickly ask increases than the
spectrum taken in@13#.

Another difference with this paper is that here we do n
select a frozen flow field and take into account time dec
relations through the term cos~v i t!. We will perform calcu-
lations corresponding to the two valuesv i53aki

1/6and

FIG. 1. Reconnection of a self-intersecting front.~a! The front
before reconnection.~b! The front after reconnection: a pocket ha
been created, a point has been deleted, and two new points c
sponding to the two intersections have been created.
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FIG. 2. ~a! Propagating front
for v i53aki

1/6 anda50 ~the front
is propagating outwards!. ~b! Plot
of ln~S! vs ln~dx! for the previous
front.
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v i53aki
2/3 in order to have an idea of the effect of decorr

lations on the fractal dimension. Let us note, however, t
the front propagates through the turbulent field, and gen
ates its own decorrelations because of the propagation.
pending on parameters, the decorrelation due to propaga
could be dominant~i.e., correlation times smaller! compared
to decorrelation due to turbulence itself over a range
scales.

We start with a pocket of burnt gases surrounded by fr
gases of radius 5, and let it evolve until it presents a fra
form with a fractal dimension approximately constant
time. The time that we have to wait is relatively short, a
proximately 0.5, which can be compared to a maxim
growth rate 0.4~typical growth time of instability 2.5! when
a50.4 ~in time units corresponding to«50.1!. This time can
also be compared to the larger correlation time~at large
-
t
r-
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f

h
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scale! of the turbulent field which is approximately 0.2 in ou
simulations.

We define the fractal dimension of the front by a b
counting method: we cover the domain with squares of s
dx and see how many boxesN are occupied by a portion o
the main pocket. We obtain a lengthS5N* dx of the main
pocket, and plot ln~S) measured at this scale, versus the log
rithm of the scale ln~ dx!. The fractal dimensiondf is one
minus the slope of this curve. We consider the fractal dim
sion of only the main pocket and not of the main and s
ondary pockets, because for large turbulence intensities,
small pockets are created, which are not at all fractal a
should not be included in the box counting. Contrary to@13#,
we use here a fractal dimension given by a box count
method and not by comparing the lengths of polygonal
proximations of the front at different scales, because
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FIG. 3. ~a! Propagating front
for v i53aki

1/6 and a50.35. ~b!
Plot of ln~S! vs ln~dx! for the pre-
vious front.
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have found that for high values of heat release, the polygo
fractal dimension is noticeably higher than the box count
fractal dimension and seems less reliable.

In Fig. 2~a!, we show in the casev i53aki
1/6a front ob-

tained fora50 ~zero heat release!. The front has a fracta
dimension df51.34, as seen by the slope of the cur
ln~S! vs ln~dx! in Fig. 2~b!. In Fig. 3~a!, we take~for the
same value ofv i! a50.35: we obtain a fractal dimensio
df51.50. The curve ln~S! vs ln~dx! is given for this case in
Fig. 3~b!. Because of the variation in time of the fractal d
mension measured and of the choice of the line giving
slope of the curve, the fractal dimensions obtained are
very precise and we expect a typical error of the order
60.02.

We now examine the casev i53aki
2/3, which corresponds

to the scaling of decorrelations expected for Kolmogor
al
g

e
ot
f

v

turbulence. Compared to the previous case~Figs. 2 and 3!,
where the correlation time was slowly varying, the corre
tion time is approximately the same at large scales, bu
much lower at small scales. In this case, the measureme
the fractal dimension is more difficult and we estimate
typical error to be60.03. In Fig. 4, a front obtained fora50
is shown, with a fractal dimensiondf51.33, very close to the
value of Fig. 2~a!. In Fig. 5, we havea50.4: the fractal
dimension is nowdf51.46.

The dependence of the fractal dimension witha is shown
in Fig. 6 for both values of correlation time. Because of t
errors involved in the measurement of the fractal dimensi
the points are relatively scattered, and we also give in
figure a fit for each value of the correlation time. For lo
values ofa the two curves are relatively close, giving
fractal dimension close to 1.34; however, whena increases,
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55 6915FRANKEL EQUATION FOR TURBULENT FLAMES IN . . .
the curve corresponding tov i53aki
1/6 ~i.e., larger correla-

tion time! is higher and seems to saturate for high values
a, i.e., very exothermic flames, corresponding to typi
fronts, as seen in Fig. 3~a!. On the contrary, the curve corre
sponding tov i53aki

2/3 increases in a much slower way, Fi
5 corresponding to the last point of this curve. We recall t
this scaling ofv i corresponds to the one in Kolmogoro
turbulence.

It is important to have an estimate of the value ofa cor-
responding to a typical flame encountered in experiments
order to locate this typical point on Fig. 6. We consider
flame withg50.8, corresponding to burnt gases with a te
perature five times higher than the temperature of fr
gases. It has been difficult to measure Markstein lengths
perimentally, but it seems typical values of this parame
range from 4 to 8@14,15# ~in units of flame thickness!. The
value ofa in units deduced from the flame thickness and
transit time is, as explained before, obtained by conside
the first term of the development of the dispersion relat

FIG. 4. Propagating front forv i53aki
2/3 anda50.

FIG. 5. Propagating front forv i53aki
2/3 anda50.4.
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with k, and gives the value, already obtained by Landau@16#

a5
1

22gS F11g2g2

12g G1/221D . ~8!

Now we have to normalizea with the units used in this
paper, i.e., corresponding to«50.1. If we take a Markstein
length of 4, we obtaina50.16. A Markstein length of 8
would give an even lower valuea50.11. It is easily seen in
Fig. 6 that these values ofa correspond on the lower curve
~Kolmogorov temporal scaling! to a relatively small increase
in fractal dimension due to gas expansion. Thus we can ju
tify to a large extent the usual approximation of zero he
release used in many theoretical and numerical works
turbulent premixed flames~see@1#, for instance!. Even for
a50.16 and on the higher curve, i.e., for a maximum valu
of the fractal dimension, we only obtain an increase of a
proximately 0.1 compared to the value at zero heat relea
For the typical values ofa, the value we get~on the lower
curve! for df for this particular flow field is comparable to
values usually obtained in experiments for high amplitud
of forcing. We recall here for purpose of comparison th
valuedf51.38 obtained in@17# in a propane engine.

This increase in fractal dimension caused by heat relea
is measurable in experiments by varying the equivalence
tio while fixing the ratio of the amplitude of forcing to the
laminar flame velocity. In general, the variation of the Mark
stein length with the equivalence ratio has to be taken in
account, and this complicates the interpretation of the expe
mental results, as the Markstein length is difficult to measu
experimentally. The result suggested by this paper that
effect of heat release is relatively small for typical flame
seems to be compatible with experiments~see, for instance
@18#!, which describe the fractal dimension as a function
the ratio of amplitude of forcing to laminar velocity, withou
taking into account at all the effect of heat release. Howev
this effect should not be small in the case of a very exothe
mic flame with a low Markstein length, which gives a mor
important value ofa in Fig. 6.

In this paper, by using a modified version of the Frank
equation in combination with a treatment of reconnectio
occurring during propagation, we have been able to simula
turbulent premixed flames submitted to the hydrodynam

FIG. 6. Fractal dimensiondf vs a: numerical results forv i

53aki
1/6 ~black diamonds!, for v i53aki

2/3~white circles!, fit for
v i53aki

1/6 ~solid line!, fit for v i53aki
2/3~dotted line!.
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Darrieus-Landau instability. This work suggests that for ty
cal values of gas expansion, the increase of fractal dimen
with heat release is relatively low. This study is perform
with a simple model of turbulent field, but others, more
alistic turbulent fields could be used in the framework p
vided in this paper. A comparison with experimental wor
~in a three-dimensional configuration, with realistic turb
v.

-
-

D

ch
-
on

-
-

-

lence! should however be done before a definitive conclus
on the effect of heat release is obtained. In any event, h
release is important for low and moderate forcings. T
Frankel equation used in this article could be very usefu
case of moderate forcings, where the front position canno
described by a function of the angular coordinate, and a tr
coordinate-free formulating is necessary.
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